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Abstract— The industrial sector continuously demands effi-
cient methods to enable non-expert operators to reprogram
robots in a timely and cost-effective manner. Advances in task-
level programming (TLP), robotic skill acquisition, and Learning
from Demonstration (LfD) have yielded promising outcomes.
Nonetheless, many existing approaches remain dependent on
extensive datasets or necessitate prior user expertise in robotic
systems. This paper introduces a framework for deriving
parameterized skill sequences from passive observation of human
demonstrations. These skill sequences reflect human behavior
and enable the design of a task plan to execute on the robot.
Since passive observation alone does not provide information
about the physical properties of objects, which are critical for
effective manipulation, our approach integrates robotic tactile
and kinesthetic sensing to estimate both static and dynamic
physical properties of the manipulated objects.

I. INTRODUCTION

A new paradigm in robotics has emerged, emphasizing
the flexibility of robotic systems and the transferability of
robot programs across different and potentially novel tasks. A
significant challenge in this context is empowering non-expert
factory personnel to reprogram robots, which is traditionally
a resource-intensive and time-consuming process during the
setup of new tasks on production lines. The concepts of task-
level programming (TLP), robot skills, and Learning from
Demonstration (LfD) have demonstrated potential in provid-
ing adaptable solutions that are intuitive and accessible to
shop-floor workers without necessitating specialized program-
ming expertise [1] [2]. There are three primary approaches
to demonstration: kinesthetic teaching, teleoperation, and
passive observation [3]. Kinesthetic teaching enables the user
to demonstrate by physically moving the robot through the
desired motions. The demonstration quality depends on the
user’s dexterity and smoothness, often requiring smoothing
or post-processing, even with expert input. Demonstrations
become more challenging as the hardware’s degrees of
freedom (DOF) increase. Teleoperation involves controlling
the robot via an external input, such as a joystick, graphical
user interface, or similar devices. Unlike kinesthetic teaching,
teleoperation allows LfD techniques to be used remotely
without requiring the user to be physically present. However,
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Fig. 1. A learning from human demonstration framework is essential for
the factory of the future, where robots must autonomously acquire new tasks
to enable flexible and adaptive assembly lines.

it may involve extra effort for interface development, extended
user training, and ensuring the availability of input hardware.
In the third approach, the robot learns by passively observing
a user performing a task. This method requires no training
for the demonstrator and is well-suited for high-DOF or
non-anthropomorphic robots where kinesthetic teaching is
challenging. It offers convenience for factory workers, as it
does not require wearing sensing devices and allows tasks
to be demonstrated without concern for robotic execution.
However, it necessitates encoding or learning a mapping
from human actions to robot-executable commands, and
solely relying on visual data makes it difficult to accurately
determine the physical properties of the manipulated objects.

The proposed learning approach to overcome these chal-
lenges is illustrated in Fig. 1. The corresponding robot setup
is shown in Fig. 2. A vision system in the robot’s head
observes and tracks human motions and interaction objects to
establish a foundational understanding of the scene and the
demonstrated task. Based on this visual input, the demonstra-
tion is segmented into discrete subtasks, referred to as skills,
along with geometric grounding of the interaction objects.
However, successful object manipulation and environmental
interaction require knowledge of physical properties, which
is not extractable from pure passive observation. In previous
work [4], we showed how a robot manipulator is used to
acquire tactile information during robotic manipulation. This
physical information enhances the completion of learned
skills and improves task execution. For adaptability in new
environments, a skill refinement process is conducted through
collective learning [5]. All acquired information is stored
within a centralized knowledge base. This paper focuses on
task segmentation from a passive observation described in
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Fig. 2. A dual-arm manipulation platform utilizing two Franka Emika Panda
robots is equipped with an RGB-D camera (Intel RealSense) mounted on
the head and an eye-in-hand camera for scene observation. Resense HEX21
F/T sensors are embedded in the fingertips for haptic feedback.

Sec. II and the physics exploration of manipulation objects
described in Sec. III.

II. TASK SEGMENTATION

The current framework is designed for transportation tasks
and enables the detection of the six skills: approach, pick,
transport, place, connect, and hold. When none of these skills
is detected, the status ”idle” is assigned. For each video frame,
a state vector is used to concisely represent the current world
state, which is necessary to recognize the skills from the
demonstration. The state vector comprises features computed
from estimated 6D poses from human keypoints and objects.
Each robotic skill is characterized by two critical elements:
preconditions and postconditions [1]. Preconditions define the
criteria that must be satisfied before the skill can be executed,
while postconditions verify whether the skill execution was
successful. These conditions ensure consistency and reliability
throughout the process. Our approach manually defines the
pre- and postconditions for all six skills in the state vector
space. It compares the extracted current state vector with
the designed pre- and postconditions vectors to detect the
correct skill. We defined the state vector so that pre- and
postconditions of the six skills are unique. Fig. 3 shows the
results of a transportation task demonstration. The ground
truth was created by manual video inspection. The framework
can reproduce the correct sequence with minor time delays.
However, this is not a problem as the execution on the robot
is not dependent on this. For the execution, we employed
Behavior Trees (BTs) to implement these six robotic skills.
BTs offer a modular, hierarchical framework well-suited for
dynamic environments, enabling seamless mapping of the
observed skill sequence to the robot platform.

III. PHYISCS EXPLORATION

From the robot’s visual perception, the geometric grounding
of the objects can be extracted. However, grasping the object
based purely on the geometric features is often unreasonable.
Parts with variable mass usually require different grasping
forces to avoid unsuccessful or destructive grasping attempts
[6]. So, physical parameters must be extracted for unknown

Fig. 3. Task segmentation from a human demonstration for a transportation
task.

objects. In our work [4], we model the forces acting on a
rigid object in the end-effector and use the measurements
of the torque sensors in the robot joints (kinesthetic) and
dedicated force/torque (F/T) sensors in the fingertips (tactile)
to solve for the unknown physical parameters using a least
squares approach. From static measurements, where the
object is grasped and moved to different positions and
orientations, the mass, the center of mass, and the sensor
offset are estimated. The performed motion significantly
influences the results when identifying dynamic parameters.
A finite sum of harmonic sine and cosine functions as the
excitation trajectory for each joint shows advantages in terms
of maximum-likelihood parameter estimation. We can identify
the six unknowns of the inertia tensor from the dynamic
measurements. Object property estimation using joint torques
achieves sufficiently accurate results for rather heavy objects,
underlining the results of existing works [7]. This approach
requires no additional hardware but is limited to torque-
controlled robots. The accuracy of estimating lighter objects
is significantly affected by noise in the measurements since
the forces acting on the rigid object are not directly measured
but derived from the joint torques and the robot kinematics. In
contrast, fingertip F/T sensors measure the interaction forces
directly and provide highly precise estimates for light objects
only constrained by the sensor’s measurement range. Previous
studies have demonstrated the application of fingertip F/T
sensors for determining additional object properties, such as
stiffness, compliance [8], and surface texture [9].

IV. CONCLUSION

We present a scene-understanding framework capable of
extracting parameterized skill sequences through passive
observation of human demonstrations. These sequences can be
directly transferred to a robotic platform for task execution
in previously unseen environments. The system leverages
kinesthetic and tactile sensing to infer critical, previously
unknown physical properties of the interaction objects.
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